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1. INTRODUCTION

The notion of an interpolating subspace of a normed linear space was
introduced in [1] as a generalization of a Haar subspace in C[a, b]. A very
lengthy and nonconstructive proof was given in [l] to show that the real
spaces 11 and 11m contain interpolating subspaces of every dimension. In this
paper in Section 2, we give a constructive proof which is substantially shorter.
In Section 3. we show that quite the opposite is true for the complex spaces 11
and 11

m • Indeed (Theorem 3.6): no proper subspace M of dimension greater
than one is interpolating for any point outside M. (It is clear that the unit
vector (1,0, ...) in 11 or 11m spans a one-dimensional interpolating subspace.)

Our terminology conforms to that of [1]. Let M be an n-dimensional
subspace of a normed linear space X. If x is in X, we say that M is interpolating
for x if, for each set of n functionals Xl*,..., x"* in ext S(X*), there is ayE M
such that Xi*(Y) = Xi*(X) (i = 1,.... n). (Here ext S(X*) denotes the set of
extreme points of the unit ball of X*.) M is an interpolating subspace of X if
and only if M is interpolating for every x E X. (Although it will not be
needed in the sequel, the following fact is of independent interest: if M is
interpolating for some x E X, then M is an interpolating subspace ofthe linear
span of M and x; hence by [1, Theorem 2.2]. x has a unique best approxi­
mation in M.)

Recall that 11* = 100 • (llm)* = loom, and that x* = (a1,a2,...)El",
(respectively, x* = (aI' a2 ,... , am) E l",m) is in ext S(ll*) (respectively,
ext S[(llm)*]) if a1)d only if I ai I = 1for all i.
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2. A CONSTRUCTIVE PROOF OF THE EXISTENCE OF INTERPOLATING SUBSPACES

IN THE REAL SPACES 11 AND 11m

Consider first the space 11 . Fix an arbitrary n ~ 1. Set Xi = (XiI' Xi2 ,...)
where

(i = 1,... , n; j = 1,2,...)

and

o< r < (1 + nn/2)-1

We shall show that Xl'"'' Xn is a basis for an n-dimensional interpolating
subspace in 11 . This is equivalent to

det [X;*(Xj)] :1= 0 for every set of n

linearly independent functionals Xi* in ext S(l1*). (I)

Let Xi* = (O"il, O"i2 , ... ) (i = 1,... , n) be linearly independent functionals in
ext S(l1*). Now

det[x;*(Xj)] =

a:J

L XljlX2j."· xnjnD(A ,... , jn),
i1•··· .in=l

where

O"liI O"li. O"lin

DUI ,... , jn) = (1)

Substituting for Xij , we get

(2)

Suppose {A ,... ,jn} and {A', ... ,jn'} are any two sets of positive integers such
that

Because of the special form of the exponents in expression (3), and because
every integer has a unique binary expansion, it follows that ji = j/ for
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i = 1,... , n. In particular then, distinct ordered arrays {A ,... ,jn} give rise to
distinct powers of r in (2). Hence each nonzero coefficient of the right side of
expression (2), regarded as a power series in r, is a determinant D(j1 ,... ,jn)'

LEMMA 2.1. The coefficients D(A ,... ,jn) are all integers and at least one
is nonzero. Moreover, \ D(j1 ,... ,jn)[ ~ nn(2.

Proof Since aij = ±1 for every i and j, it follows from (1) that
D(j1 , ,jn) is an integer. Further, by Hadamard's determinant inequality,
I D(j1 , ,jn)! ~ nn(2. Since the vectors x/ = (ail' ai2 ,...) (i = 1,... , n) are
linearly independent, the rank of the n by 00 matrix having these vectors as
rows is n. Hence D(A ,... , jn) =1= 0 for some A,.. ·, jn .

LEMMA 2.2. Let f(r) = I:: anrn be a power series whose coefficients are
integral, not all zero, and I an I ~ M. If 0 < g < (1 + M)-t, thenf(g) =1= O.

Proof. Let N denote the smallest integer n such that an =1= O. Then

00

~ I aN \ I giN - L I an I I gin
N+1

Now for each set of n linearly independent functionals Xi * E ext S(ll*), the
expression (2) is a power series in r with coefficients D(j1 ,... ,jn) which satisfy
the hypothesis of Lemma 2.2 with M = nn/2. Since 0 < r < (1 + nn(2)-t, it
follows from Lemma 2.2 that (I) holds, and so we have that Xl'"'' Xn spans an
n-dimensional interpolating subspace in II .

For the case 11m, fix an arbitrary integer 1 ~ n ~ m. Set

(i = 1,... , n),

where (as before)

and 0 < r < (I + nn/2)-1. Then exactly the same proof as above shows that
Xl'"'' Xn spans an n-dimensional interpolating subspace in 11m•



296 BIGGS et al.

3. THE NONEXISTENCE OF INTERPOLATING SUBSPACES OF DIMENSION GREATER

THAN ONE IN THE COMPLEX SPACES 11 AND 11m.

We first prove four lemmas concerning matrices. For these lemmas,
unless otherwise stated, lower case letters will denote complex numbers.

Call two numbers a and b parallel if there exist real numbers x and y,
not both zero, such that xa + yb = O.

LEMMA 3.1. If B = (bij) is a 3 X 2 matrix whose first two rows are
linearly independent, then there is a nonzero vector (cl , C2 , c3) in the column
space of B and a solution ZI , Z2' Z3' to the equation ZICl + Z2C2 + Z3C3 = 0
such that I Zi I = 1 and either

(i) some two of the numbers ZiCi are not parallel, or

(ii) C3 = O.

Proof First perform column operations to bring B into the form

If I a I = 1b I, then the column space contains a vector (Cl , C2 , 0) with
I Cl I = I c2 1= 1, in which case we take Zl = -C2/C1 , Z2 = Z3 = 1.

Ifa = 0, b =1= 0, the column space contains the vector (cl , c2, c3) = (d, 1, b)
for arbitrary d. If b is real, take d = -(i + b) and (Zl , Z2 , Z3) = (1, i, 1).
Thus ZICl + Z2C2 + Z3C3 = 0 and Z2C2 = i and Z3C3 = b are not parallel. If b
is not real, take ZI = Z2 = Z3 = 1 and d = -(1 + b).

The case a =1= 0, b = 0 is similar to the case above. Assume therefore that
a =1= 0, b =1= 0, and Ia I =1= I b I. In particular, either b =1= -lor a =1= -1. By
symmetry, it suffices to assume b =1= -1. Choose Z =1= -a, I Z 1 = 1, such
that (1 + b)z/(a + z) is not real. The column space contains the vector
(cl , C2' c3) = (d, 1, do + b) for arbitrary d. Take d = -(1 + b)/(a + z) and
(ZI' Z2' Z3) = (z, 1, 1). Thus ZICl + Z2C2 + Z3C3 = 0, and ZlCl is not parallel
to Z2C2 since ZICl = zd is not real but Z2C2 = 1.

LEMMA 3.2. IfB = (bi ;) is an m X 2 matrix (m ?': 3) ofrank 2, then there
is a nonzero vector (Cl' C2 , ... , cm) in the column space of B and a solution
Zl , Z2 ,... , Zm to the equation ZICl + Z2C2 + ... + ZmCm = 0 such that I Zi I = 1
for each i and either

(i) some two of the ZiCi are not parallel, or

(ii) all but two of the Ci are zero.



INTERPOLATING SUBSPACES 297

Proof Rearrange the notation so that the first two rows of B are linearly
independent. Let

where a = bSI + ... + bml , b = bS2 + ... + bm2 , and apply Lemma 3.1:
there is a nonzero vector (CI, C2 ,c) in the column space of BI and
a solution (Zl' Z2 ,z) to the equation ZICI + Z2C2 + ZC = 0 such that
I Zl I = I Z2 \ = I Z I = 1 and either C = 0 or some two of ZICI, Z2C2, zc are
not parallel. Let (CI' C2 , ... , cm) be the corresponding vector in the column
space of B (where C = Cs + ... + cm).

If some two of ZICI , Z2C2 , zc are not parallel, take Zs = ... = Zm = z. It
follows that some two of ZICI , Z2C2 , ... , ZmCm are not parallel.

Now suppose C = O. Then CI =F O. If Cs = '" = Cm = 0, take Za = .. , =
Zm = z. If Ci =F 0 for some 3 ~ j ~ m, choose I z' I = I such that ZICI and
z'Ci are not parallel, and take Zs = ... = Zm = z'.

LEMMA 3.3. If dl + d2 + ... + dm = 0 (m ? 3) and some two of the di
arenotparallei, then there isan(m - 1) X m matrix W = (wij)ofrankm -1,
with I Wij I = 1, such that

(1)

Proof Proceed by induction on m. For m = 3, arrange the notation so
that dl is not parallel to d2 • We can assume without loss of generality that
dl + d2 = 1. Hence neither dl nor d2 is real. Let w, Z be the solution of the
equation wdl + zd2 = 1which satisfies I w I = I Z I = 1and w =1= Z (i.e., take
w = al/dl , Z = a2/d2). The matrix

W = [~ Z ~]
is then a solution to Eq. (1).

Assume now that m ? 4 and that Lemma 3.3 is true for m - 1. If some di

is zero, we can assume that dm = O. By the induction hypothesis, there is an
(m - 2) X (m - 1) matrix WI = (Wii) of rank m - 2 such that
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Hence the matrix
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[ W

n WI •m - 1

JW= Wm~2.1 Wm-2.m-1

Wll W1.m-1

has rank m - 1 and satisfies Eq. (1).
Assume therefore that all di are nonzero. Since m ?: 4, the di are all

nonzero, and some two of the di are not parallel, it follows that there are
distinct indices i, j, k such that di is not parallel to dj and di + dj is not
parallel to dk • Without loss of generality, we may assume that dl is not
parallel to d2 and dl + d2 is not parallel to some dk (k ?: 3). Also, we may
assume that dl + d2 = 1, and hence that dl and d2 are not real. As in the
case m = 3, let w, z be the solution to the equation wdl + zd2 = 1 which
satisfies I W I = I z I = 1 and W =1= z. By the induction hypothesis, there is an
(m - 2) x (m - 1) matrix WI = (Wij) such that I Wij I = 1, WI has rank
m - 2, and

WI rrl~m
The matrix

[ Wn
Wll W12

W',m-' 1
w= Wm~2.1 Wm - 2•1 Wm - 2•2 Wm-2.m-1

WWll zWll W12 W1.m-1

has rank m - 1 since WI has rank m - 2 and the last row of W is not a linear
combination of the first m - 2 rows. Clearly, W is a solution to Eq. (1). This
completes the induction step and proves the Lemma.

LEMMA 3.4. IfB = (bij) is an m X 2 matrix ofrank 2 (m ?: 3), then there
is a nonzero vector (CI , C2 , ... , cm) in the column space ofB and an (m - 1) X m
matrix E = (aij) of rank m - 1 such that I aij I = 1 and

(2)

Proof By Lemma 3.2 there is a nonzero vector (CI' C2 , ... , cm) in
the column space of B and a solution Zl' Z2 , ... , Zm to the equation
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ZlC1 + Z2C2 + ... + ZmCm = 0 such that I Zi I = 1 for each i and which
satisfies condition (i) or (ii) of that Lemma.

If (i) holds, some two of the ZiCi are not parallel. Hence by Lemma 3.3
there is an (m - 1) X m matrix W = (Wij) of rank m - 1 such that
\ Wij I = 1 for each i andj and

The (m - 1) X m matrix E = (WijZj) has rank m - 1 and is a solution to
Eq. (2).

If (ii) holds, we may assume without loss ofgenerality that Ca = C4 = ... =
Cm = O. LetEl = (uij)beany(m - 1) X (m - 1) matrix ofrankm - 1 such
that I Uij I = 1 and Un = U21 = ... = Um-1,1 = Z2' Then the (m - 1) X m
matrix

has rank m - 1 and is a solution to Eq. (2).
We shall now use Lemma 3.4 to establish the nonexistence of interpolating

subspaces in the complex spaces II and 11
m•

If M is a finite-dimensional subspace of a normed linear space X and if
A C X*, then we write dimM A for the dimension of the subspace of M*
spanned by the restrictions of the members of A to M.

LEMMA 3.5. Let M be an n-dimensional subspace of the complex space 11m

(1 < n < m). Then there exists a set A = {x1*, X2*"'" X~_l} of m - 1
linearly independent functionals in ext S«(llm)*) such that dimM A < n.

Proof By Lemma 3.4, there exist m - 1 linearly independent functionals
Xl *,..., X~_l in ext S((llm)*) and a nonzero element y E M such that Xi*(Y) = 0
for i = 1,... , m - 1. Letting A = {Xl *,... , X~l}' it follows that dimM A < n.

THEOREM 3.6. Let M be an n-dimensional subspace (n > 1) of complex II
(or 11

m). Then M is not interpolating for any point outside of M. In particular,
the complex spaces II and 11

m contain no proper interpolating subspace of
dimension greater than one.
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Proof Assume first that Me 11
m and suppose, on the contrary, that M is

interpolating for some XoE 11m ,....., M.Let M o be the linear span of M and x.
By Lemma 3.5, there is a set A of m - 1 linearly independent functionals in
ext S«llm)*) such that dimM A < n. Since M is interpolating for Xo ,it follows
that dimMo A = dimMA < n. Let F be a subspace of 11

m complementary
to M o , so that dim F = m - n - 1. Then dimFA ~ m - n - 1 so that

dim(span A) ~ dimMo A + dimF A < n + m - n - 1 = m - 1,

which is absurd.
Assume next that Me II and suppose, on the contrary, that M is inter­

polating for some Y = (Yl ,Y2 ,...) in II ,....., M. We choose an integer k so
that the map (Xl' X2 ,...) -- (Xl' X2 ,... , xk) is one-to-one on the linear span Mo
of M and y. Define L: II -- It+l by

L(xl , X2 ,...) = (Xl' X2 ,... , Xk , f Xi)'
k+l

Then L is one-to-one on M o • Let M' = L(M) and y' = L(y). Let Xl *,... , Xn*
be functionals in ext S((lf+l)*) with

(i = 1,... , n).

Define

Xi* = (ail' ai2 ,... , aik , ai,k+l , ai,k+l ,...)

(i = 1, , n). Then Xi * is in ext S(ll *). Therefore there exists W =
(WI' W2 , ) EM such that Xi*(W) = Xi*(Y) for i = 1,... , n. Letting w' = L(w),
we see that

Xi*(W') = Xi*(W) = Xi*(Y) = Xi*(Y') (i = 1,... , n).

Since the Xi* were arbitrary, M' is interpolating for y'. But since Y' 1= M',
this is impossible by the first part of the proof, and hence the proof is
complete.

Finally, we cite a result of Ault [2] which is in direct contrast to
Theorem 3.6. Let E denote any subset of the set {z E e: I z [ = 1}. We say
that an n-dimensional subspace M of 11

m is interpolating relative to E if for
each X E 11m and each set of n linearly independent functionals Xl *,... , X n*
in ext S«(lln)*)-whose coordinates lie in E -there exists Y E M such that
Xi*(Y) = Xi*(X) (i = 1,... , n). Note that a finite dimensional subspace of 11m

is interpolating relative to E = {z: 1 z I = 1} if and only if it is an inter­
polating subspace.

Using a Baire category argument, Au1t proved the following.
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THEOREM (see [2, Corollary 1.21]). Let L be any countable subset of
{z: I z I = I}. Then for each 1 ~ n ~ m, the complex space 11m contains an
n-dimensional subspace which is interpolating relative to L.
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