Interpolating Subspaces in l_1 -Spaces

J. H. BIGGS, F. R. DEUTSCH,* R. E. HUFF, P. D. MORRIS, J. E. OLSON

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Communicated by E. W. Cheney

Received December 7, 1970

1. INTRODUCTION

The notion of an *interpolating subspace* of a normed linear space was introduced in [1] as a generalization of a Haar subspace in C[a, b]. A very lengthy and nonconstructive proof was given in [1] to show that the *real* spaces l_1 and l_1^m contain interpolating subspaces of every dimension. In this paper in Section 2, we give a *constructive* proof which is substantially shorter. In Section 3, we show that quite the opposite is true for the *complex* spaces l_1 and l_1^m . Indeed (Theorem 3.6): no proper subspace M of dimension greater than one is interpolating for any point outside M. (It is clear that the unit vector (1, 0, ...) in l_1 or l_1^m spans a one-dimensional interpolating subspace.)

Our terminology conforms to that of [1]. Let M be an *n*-dimensional subspace of a normed linear space X. If x is in X, we say that M is *interpolating* for x if, for each set of n functionals $x_1^*, ..., x_n^*$ in ext $S(X^*)$, there is a $y \in M$ such that $x_i^*(y) = x_i^*(x)$ (i = 1, ..., n). (Here ext $S(X^*)$ denotes the set of extreme points of the unit ball of X^* .) M is an *interpolating subspace* of X if and only if M is interpolating for every $x \in X$. (Although it will not be needed in the sequel, the following fact is of independent interest: if M is interpolating for some $x \in X$, then M is an interpolating subspace of the linear span of M and x; hence by [1, Theorem 2.2], x has a unique best approximation in M.)

Recall that $l_1^* = l_{\infty}$, $(l_1^m)^* = l_{\infty}^m$, and that $x^* = (\sigma_1, \sigma_2, ...) \in l_{\infty}$ (respectively, $x^* = (\sigma_1, \sigma_2, ..., \sigma_m) \in l_{\infty}^m$) is in ext $S(l_1^*)$ (respectively, ext $S[(l_1^m)^*]$) if and only if $|\sigma_i| = 1$ for all *i*.

* This author was supported by a grant from the National Science Foundation.

BIGGS et al.

2. A Constructive Proof of the Existence of Interpolating Subspaces in the Real Spaces l_1 and l_1^m

Consider first the space l_1 . Fix an arbitrary $n \ge 1$. Set $x_i = (x_{i1}, x_{i2}, ...)$ where

$$x_{ij} = r^{2^{nj+i}}$$
 $(i = 1,...,n; j = 1, 2,...)$

and

$$0 < r < (1 + n^{n/2})^{-1}$$

We shall show that $x_1, ..., x_n$ is a basis for an n-dimensional interpolating subspace in l_1 . This is equivalent to

det
$$[x_i^*(x_j)] \neq 0$$
 for every set of n
linearly independent functionals x_i^* in ext $S(l_1^*)$. (I)

Let $x_i^* = (\sigma_{i1}, \sigma_{i2}, ...)$ (i = 1, ..., n) be linearly independent functionals in ext $S(l_1^*)$. Now

$$det[x_i^*(x_j)] = \begin{vmatrix} \sum \sigma_{1j} x_{1j} & \sum \sigma_{1j} x_{2j} & \cdots & \sum \sigma_{1j} x_{nj} \\ \cdots & \sum \sigma_{nj} x_{1j} & \sum \sigma_{nj} x_{2j} & \cdots & \sum \sigma_{nj} x_{nj} \end{vmatrix}$$
$$= \sum_{j_1,\dots,j_n=1}^{\infty} x_{1j_1} x_{2j_2} \cdots x_{nj_n} D(j_1,\dots,j_n),$$

where

$$D(j_1,...,j_n) = \begin{vmatrix} \sigma_{1j_1} & \sigma_{1j_2} & \cdots & \sigma_{1j_n} \\ \cdots & & & \\ \sigma_{nj_1} & \sigma_{nj_2} & \cdots & \sigma_{nj_n} \end{vmatrix}$$
(1)

Substituting for x_{ij} , we get

$$\det[x_i^*(x_j)] = \sum_{j_1,\dots,j_n=1}^{\infty} r^{2^{nj_1+1}+2^{nj_2+2}+\dots+2^{nj_n+n}} D(j_1,\dots,j_n).$$
(2)

Suppose $\{j_1, ..., j_n\}$ and $\{j_1', ..., j_n'\}$ are any two sets of positive integers such that

$$2^{nj_1+1} + 2^{nj_2+2} + \dots + 2^{nj_n+n} = 2^{nj_1'+1} + 2^{nj_2'+2} + \dots + 2^{nj_n'+n}.$$
 (3)

Because of the special form of the exponents in expression (3), and because every integer has a unique binary expansion, it follows that $j_i = j'_i$ for

294

i = 1,..., n. In particular then, distinct ordered arrays $\{j_1,..., j_n\}$ give rise to distinct powers of r in (2). Hence each nonzero coefficient of the right side of expression (2), regarded as a power series in r, is a determinant $D(j_1,...,j_n)$.

LEMMA 2.1. The coefficients $D(j_1,...,j_n)$ are all integers and at least one is nonzero. Moreover, $|D(j_1,...,j_n)| \leq n^{n/2}$.

Proof. Since $\sigma_{ij} = \pm 1$ for every *i* and *j*, it follows from (1) that $D(j_1,...,j_n)$ is an integer. Further, by Hadamard's determinant inequality, $|D(j_1,...,j_n)| \leq n^{n/2}$. Since the vectors $x_i^* = (\sigma_{i1}, \sigma_{i2},...)$ (i = 1,...,n) are linearly independent, the rank of the *n* by ∞ matrix having these vectors as rows is *n*. Hence $D(j_1,...,j_n) \neq 0$ for some $j_1,...,j_n$.

LEMMA 2.2. Let $f(r) = \sum_{0}^{\infty} a_n r^n$ be a power series whose coefficients are integral, not all zero, and $|a_n| \leq M$. If $0 < \xi < (1 + M)^{-1}$, then $f(\xi) \neq 0$.

Proof. Let N denote the smallest integer n such that $a_n \neq 0$. Then

$$|f(\xi)| = |a_N \xi^N + a_{N+1} \xi^{N+1} + \dots|$$

$$\geqslant |a_N| |\xi|^N - \sum_{N+1}^{\infty} |a_n| |\xi|^n$$

$$\geqslant |\xi|^N - M \frac{|\xi|^{N+1}}{1 - |\xi|} = \frac{|\xi|^N}{1 - |\xi|} [1 - (1 + M) |\xi|]$$

$$> 0.$$

Now for each set of *n* linearly independent functionals $x_i^* \in \text{ext } S(l_1^*)$, the expression (2) is a power series in *r* with coefficients $D(j_1, ..., j_n)$ which satisfy the hypothesis of Lemma 2.2 with $M = n^{n/2}$. Since $0 < r < (1 + n^{n/2})^{-1}$, it follows from Lemma 2.2 that (I) holds, and so we have that $x_1, ..., x_n$ spans an *n*-dimensional interpolating subspace in l_1 .

For the case l_1^m , fix an arbitrary integer $1 \leq n \leq m$. Set

$$x_i = (x_{i1}, x_{i2}, ..., x_{im})$$
 $(i = 1, ..., n),$

where (as before)

$$x_{ii} = r^{2^{nj+i}}$$

and $0 < r < (1 + n^{n/2})^{-1}$. Then exactly the same proof as above shows that $x_1, ..., x_n$ spans an n-dimensional interpolating subspace in l_1^m .

3. The Nonexistence of Interpolating Subspaces of Dimension Greater Than One in the Complex Spaces l_1 and l_1^m .

We first prove four lemmas concerning matrices. For these lemmas, unless otherwise stated, lower case letters will denote complex numbers.

Call two numbers a and b parallel if there exist real numbers x and y, not both zero, such that xa + yb = 0.

LEMMA 3.1. If $B = (b_{ij})$ is a 3×2 matrix whose first two rows are linearly independent, then there is a nonzero vector (c_1, c_2, c_3) in the column space of B and a solution z_1, z_2, z_3 , to the equation $z_1c_1 + z_2c_2 + z_3c_3 = 0$ such that $|z_i| = 1$ and either

- (i) some two of the numbers $z_i c_i$ are not parallel, or
- (ii) $c_3 = 0$.

Proof. First perform column operations to bring B into the form

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ a & b \end{bmatrix}.$$

If |a| = |b|, then the column space contains a vector $(c_1, c_2, 0)$ with $|c_1| = |c_2| = 1$, in which case we take $z_1 = -c_2/c_1$, $z_2 = z_3 = 1$.

If $a = 0, b \neq 0$, the column space contains the vector $(c_1, c_2, c_3) = (d, 1, b)$ for arbitrary d. If b is real, take d = -(i + b) and $(z_1, z_2, z_3) = (1, i, 1)$. Thus $z_1c_1 + z_2c_2 + z_3c_3 = 0$ and $z_2c_2 = i$ and $z_3c_3 = b$ are not parallel. If b is not real, take $z_1 = z_2 = z_3 = 1$ and d = -(1 + b).

The case $a \neq 0$, b = 0 is similar to the case above. Assume therefore that $a \neq 0$, $b \neq 0$, and $|a| \neq |b|$. In particular, either $b \neq -1$ or $a \neq -1$. By symmetry, it suffices to assume $b \neq -1$. Choose $z \neq -a$, |z| = 1, such that (1 + b)z/(a + z) is not real. The column space contains the vector $(c_1, c_2, c_3) = (d, 1, da + b)$ for arbitrary d. Take d = -(1 + b)/(a + z) and $(z_1, z_2, z_3) = (z, 1, 1)$. Thus $z_1c_1 + z_2c_2 + z_3c_3 = 0$, and z_1c_1 is not parallel to z_2c_2 since $z_1c_1 = zd$ is not real but $z_2c_2 = 1$.

LEMMA 3.2. If $B = (b_{ij})$ is an $m \times 2$ matrix ($m \ge 3$) of rank 2, then there is a nonzero vector ($c_1, c_2, ..., c_m$) in the column space of B and a solution $z_1, z_2, ..., z_m$ to the equation $z_1c_1 + z_2c_2 + \cdots + z_mc_m = 0$ such that $|z_i| = 1$ for each i and either

- (i) some two of the $z_i c_i$ are not parallel, or
- (ii) all but two of the c_i are zero.

Proof. Rearrange the notation so that the first two rows of B are linearly independent. Let

$$B_1 = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ a & b \end{bmatrix},$$

where $a = b_{31} + \dots + b_{m1}$, $b = b_{32} + \dots + b_{m2}$, and apply Lemma 3.1: there is a nonzero vector (c_1, c_2, c) in the column space of B_1 and a solution (z_1, z_2, z) to the equation $z_1c_1 + z_2c_2 + zc = 0$ such that $|z_1| = |z_2| = |z| = 1$ and either c = 0 or some two of z_1c_1, z_2c_2, zc are not parallel. Let (c_1, c_2, \dots, c_m) be the corresponding vector in the column space of B (where $c = c_3 + \dots + c_m$).

If some two of z_1c_1 , z_2c_2 , z_c are not parallel, take $z_3 = \cdots = z_m = z$. It follows that some two of z_1c_1 , z_2c_2 ,..., z_mc_m are not parallel.

Now suppose c = 0. Then $c_1 \neq 0$. If $c_3 = \cdots = c_m = 0$, take $z_3 = \cdots = z_m = z$. If $c_j \neq 0$ for some $3 \leq j \leq m$, choose |z'| = 1 such that z_1c_1 and $z'c_j$ are not parallel, and take $z_3 = \cdots = z_m = z'$.

LEMMA 3.3. If $d_1 + d_2 + \cdots + d_m = 0$ $(m \ge 3)$ and some two of the d_i are not parallel, then there is an $(m-1) \times m$ matrix $W = (w_{ij})$ of rank m-1, with $|w_{ij}| = 1$, such that

$$W\begin{bmatrix} d_1\\ d_2\\ \vdots\\ d_m \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \vdots\\ 0 \end{bmatrix}.$$
 (1)

Proof. Proceed by induction on m. For m = 3, arrange the notation so that d_1 is not parallel to d_2 . We can assume without loss of generality that $d_1 + d_2 = 1$. Hence neither d_1 nor d_2 is real. Let w, z be the solution of the equation $wd_1 + zd_2 = 1$ which satisfies |w| = |z| = 1 and $w \neq z$ (i.e., take $w = d_1/d_1$, $z = d_2/d_2$). The matrix

$$W = \begin{bmatrix} 1 & 1 & 1 \\ w & z & 1 \end{bmatrix}$$

is then a solution to Eq. (1).

Assume now that $m \ge 4$ and that Lemma 3.3 is true for m - 1. If some d_i is zero, we can assume that $d_m = 0$. By the induction hypothesis, there is an $(m-2) \times (m-1)$ matrix $W_1 = (w_{ij})$ of rank m - 2 such that

$$W_1 \begin{bmatrix} d_1 \\ \vdots \\ d_{m-1} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Hence the matrix

$$W = \begin{bmatrix} w_{11} & \cdots & w_{1,m-1} & 1 \\ \vdots & & & \vdots \\ w_{m-2,1} & \cdots & w_{m-2,m-1} & 1 \\ w_{11} & \cdots & w_{1,m-1} & -1 \end{bmatrix}$$

has rank m - 1 and satisfies Eq. (1).

Assume therefore that all d_i are nonzero. Since $m \ge 4$, the d_i are all nonzero, and some two of the d_i are not parallel, it follows that there are distinct indices i, j, k such that d_i is not parallel to d_j and $d_i + d_j$ is not parallel to d_k . Without loss of generality, we may assume that d_1 is not parallel to d_2 and $d_1 + d_2$ is not parallel to some d_k ($k \ge 3$). Also, we may assume that $d_1 + d_2 = 1$, and hence that d_1 and d_2 are not real. As in the case m = 3, let w, z be the solution to the equation $wd_1 + zd_2 = 1$ which satisfies |w| = |z| = 1 and $w \neq z$. By the induction hypothesis, there is an $(m-2) \times (m-1)$ matrix $W_1 = (w_{ij})$ such that $|w_{ij}| = 1$, W_1 has rank m-2, and

$$W_1\begin{bmatrix} d_1+d_2\\ d_3\\ \vdots\\ d_m \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \vdots\\ 0 \end{bmatrix}.$$

The matrix

$$W = \begin{bmatrix} w_{11} & w_{11} & w_{12} & \cdots & w_{1,m-1} \\ \vdots & & & & \\ w_{m-2,1} & w_{m-2,1} & w_{m-2,2} & \cdots & w_{m-2,m-1} \\ ww_{11} & zw_{11} & w_{12} & \cdots & w_{1,m-1} \end{bmatrix}$$

has rank m - 1 since W_1 has rank m - 2 and the last row of W is not a linear combination of the first m - 2 rows. Clearly, W is a solution to Eq. (1). This completes the induction step and proves the Lemma.

LEMMA 3.4. If $B = (b_{ij})$ is an $m \times 2$ matrix of rank 2 ($m \ge 3$), then there is a nonzero vector ($c_1, c_2, ..., c_m$) in the column space of B and an $(m - 1) \times m$ matrix $E = (\sigma_{ij})$ of rank m - 1 such that $|\sigma_{ij}| = 1$ and

$$E\begin{bmatrix} c_1\\c_2\\\vdots\\c_m\end{bmatrix} = \begin{bmatrix} 0\\0\\\vdots\\0\end{bmatrix}.$$
 (2)

Proof. By Lemma 3.2 there is a nonzero vector $(c_1, c_2, ..., c_m)$ in the column space of B and a solution $z_1, z_2, ..., z_m$ to the equation

298

 $z_1c_1 + z_2c_2 + \cdots + z_mc_m = 0$ such that $|z_i| = 1$ for each *i* and which satisfies condition (i) or (ii) of that Lemma.

If (i) holds, some two of the $z_i c_i$ are not parallel. Hence by Lemma 3.3 there is an $(m-1) \times m$ matrix $W = (w_{ij})$ of rank m-1 such that $|w_{ij}| = 1$ for each *i* and *j* and

$$W\begin{bmatrix} z_1c_1\\z_2c_2\\\vdots\\z_mc_m\end{bmatrix} = \begin{bmatrix} 0\\0\\\vdots\\0\end{bmatrix}.$$

The $(m-1) \times m$ matrix $E = (w_{ij}z_j)$ has rank m-1 and is a solution to Eq. (2).

If (ii) holds, we may assume without loss of generality that $c_3 = c_4 = \cdots = c_m = 0$. Let $E_1 = (\sigma_{ij})$ be any $(m-1) \times (m-1)$ matrix of rank m-1 such that $|\sigma_{ij}| = 1$ and $\sigma_{11} = \sigma_{21} = \cdots = \sigma_{m-1,1} = z_2$. Then the $(m-1) \times m$ matrix

$$E = \begin{bmatrix} z_1 & & \\ z_1 & & \\ \vdots & & E_1 \\ z_1 & & \end{bmatrix}$$

has rank m - 1 and is a solution to Eq. (2).

We shall now use Lemma 3.4 to establish the nonexistence of interpolating subspaces in the complex spaces l_1 and l_1^m .

If M is a finite-dimensional subspace of a normed linear space X and if $A \subset X^*$, then we write $\dim_M A$ for the dimension of the subspace of M^* spanned by the restrictions of the members of A to M.

LEMMA 3.5. Let M be an n-dimensional subspace of the complex space l_1^m (1 < n < m). Then there exists a set $A = \{x_1^*, x_2^*, ..., x_{m-1}^*\}$ of m - 1linearly independent functionals in ext $S((l_1^m)^*)$ such that $\dim_M A < n$.

Proof. By Lemma 3.4, there exist m - 1 linearly independent functionals $x_1^*, ..., x_{m-1}^*$ in ext $S((l_1^m)^*)$ and a nonzero element $y \in M$ such that $x_i^*(y) = 0$ for i = 1, ..., m - 1. Letting $A = \{x_1^*, ..., x_{m-1}^*\}$, it follows that dim_M A < n.

THEOREM 3.6. Let M be an n-dimensional subspace (n > 1) of complex l_1 (or l_1^m). Then M is not interpolating for any point outside of M. In particular, the complex spaces l_1 and l_1^m contain no proper interpolating subspace of dimension greater than one.

Proof. Assume first that $M \subseteq l_1^m$ and suppose, on the contrary, that M is interpolating for some $x_0 \in l_1^m \sim M$. Let M_0 be the linear span of M and x. By Lemma 3.5, there is a set A of m-1 linearly independent functionals in ext $S((l_1^m)^*)$ such that $\dim_M A < n$. Since M is interpolating for x_0 , it follows that $\dim_{M_0} A = \dim_M A < n$. Let F be a subspace of l_1^m complementary to M_0 , so that $\dim_F = m - n - 1$. Then $\dim_F A \leq m - n - 1$ so that

 $\dim(\operatorname{span} A) \leqslant \dim_{M_0} A + \dim_F A < n + m - n - 1 = m - 1,$

which is absurd.

Assume next that $M \subset l_1$ and suppose, on the contrary, that M is interpolating for some $y = (y_1, y_2, ...)$ in $l_1 \sim M$. We choose an integer k so that the map $(x_1, x_2, ...) \rightarrow (x_1, x_2, ..., x_k)$ is one-to-one on the linear span M_0 of M and y. Define $L: l_1 \rightarrow l_1^{k+1}$ by

$$L(x_1, x_2, ...) = (x_1, x_2, ..., x_k, \sum_{k=1}^{\infty} x_i).$$

Then L is one-to-one on M_0 . Let M' = L(M) and y' = L(y). Let $\tilde{x}_1^*, ..., \tilde{x}_n^*$ be functionals in ext $S((l_1^{k+1})^*)$ with

$$\tilde{x}_i^* = (\sigma_{i1}, \sigma_{i2}, ..., \sigma_{i,k+1}) \quad (i = 1, ..., n).$$

Define

$$x_i^{*} = (\sigma_{i1}$$
 , σ_{i2} ,..., σ_{ik} , $\sigma_{i,k+1}$, $\sigma_{i,k+1}$,...)

(i = 1,..., n). Then x_i^* is in ext $S(l_1^*)$. Therefore there exists $w = (w_1, w_2,...) \in M$ such that $x_i^*(w) = x_i^*(y)$ for i = 1,..., n. Letting w' = L(w), we see that

$$\tilde{x}_i^*(w') = x_i^*(w) = x_i^*(y) = \tilde{x}_i^*(y')$$
 $(i = 1, ..., n).$

Since the \tilde{x}_i^* were arbitrary, M' is interpolating for y'. But since $y' \notin M'$, this is impossible by the first part of the proof, and hence the proof is complete.

Finally, we cite a result of Ault [2] which is in direct contrast to Theorem 3.6. Let Σ denote any subset of the set $\{z \in \mathcal{C}: |z| = 1\}$. We say that an *n*-dimensional subspace M of l_1^m is *interpolating relative to* Σ if for each $x \in l_1^m$ and each set of *n* linearly independent functionals $x_1^*, ..., x_n^*$ in ext $S((l_1^n)^*)$ —whose coordinates lie in Σ —there exists $y \in M$ such that $x_i^*(y) = x_i^*(x)$ (i = 1, ..., n). Note that a finite dimensional subspace of l_1^m is interpolating relative to $\Sigma = \{z: |z| = 1\}$ if and only if it is an interpolating subspace.

Using a Baire category argument, Ault proved the following.

INTERPOLATING SUBSPACES

THEOREM (see [2, Corollary 1.21]). Let Σ be any countable subset of $\{z: |z| = 1\}$. Then for each $1 \leq n \leq m$, the complex space l_1^m contains an *n*-dimensional subspace which is interpolating relative to Σ .

References

- 1. D. A. AULT, F. R. DEUTSCH, P. D. MORRIS, AND J. E. OLSON, Interpolating subspaces in approximation theory, J. Approximation Theory, 3 (1970), 164–182.
- 2. D. A. AULT, Characterization theorems and algorithms for best approximations, Ph.D. thesis, The Pennsylvania State University, 1970.