Interpolating Subspaces in \boldsymbol{l}_{1}-Spaces

J. H. Biggs, F. R. Deutsch,* R. E. Huff, P. D. Morris, J. E. Olson
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Communicated by E. W. Cheney

Received December 7, 1970

1. Introduction

The notion of an interpolating subspace of a normed linear space was introduced in [1] as a generalization of a Haar subspace in $C[a, b]$. A very lengthy and nonconstructive proof was given in [1] to show that the real spaces l_{1} and $l_{1}{ }^{m}$ contain interpolating subspaces of every dimension. In this paper in Section 2, we give a constructive proof which is substantially shorter. In Section 3, we show that quite the opposite is true for the complex spaces l_{1} and $l_{1}{ }^{m}$. Indeed (Theorem 3.6): no proper subspace M of dimension greater than one is interpolating for any point outside M. (It is clear that the unit vector $(1,0, \ldots)$ in l_{1} or $l_{1}{ }^{m}$ spans a one-dimensional interpolating subspace.)

Our terminology conforms to that of [1]. Let M be an n-dimensional subspace of a normed linear space X. If x is in X, we say that M is interpolating for x if, for each set of n functionals $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ in ext $S\left(X^{*}\right)$, there is a $y \in M$ such that $x_{i}{ }^{*}(y)=x_{i}^{*}(x)(i=1, \ldots, n)$. (Here ext $S\left(X^{*}\right)$ denotes the set of extreme points of the unit ball of X^{*}.) M is an interpolating subspace of X if and only if M is interpolating for every $x \in X$. (Although it will not be needed in the sequel, the following fact is of independent interest: if M is interpolating for some $x \in X$, then M is an interpolating subspace of the linear span of M and x; hence by [1, Theorem 2.2], x has a unique best approximation in M.)

Recall that $l_{1}^{*}=l_{\infty},\left(l_{1}^{m}\right)^{*}=l_{\infty}^{m}$, and that $x^{*}=\left(\sigma_{1}, \sigma_{2}, \ldots\right) \in l_{\infty}$ (respectively, $x^{*}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right) \in l_{\infty}{ }^{m}$) is in $\operatorname{ext} S\left(l_{1}{ }^{*}\right)$ (respectively, ext $\left.S\left[\left(l_{1}^{m}\right)^{*}\right]\right)$ if and only if $\left|\sigma_{i}\right|=1$ for all i.

[^0]2. A Constructive Proof of the Existence of Interpolating Subspaces In the Real Spaces l_{1} and $l_{1}{ }^{m}$

Consider first the space l_{1}. Fix an arbitrary $n \geqslant 1$. Set $x_{i}=\left(x_{i 1}, x_{i 2}, \ldots\right)$ where

$$
x_{i j}=r^{2^{n j+i}} \quad(i=1, \ldots, n ; \quad j=1,2, \ldots)
$$

and

$$
0<r<\left(1+n^{n / 2}\right)^{-1}
$$

We shall show that x_{1}, \ldots, x_{n} is a basis for an n-dimensional interpolating subspace in l_{1}. This is equivalent to

$$
\begin{align*}
& \operatorname{det}\left[x_{i}{ }^{*}\left(x_{j}\right)\right] \neq 0 \text { for every set of } n \\
& \text { linearly independent functionals } x_{i}^{*} \text { in ext } S\left(l_{1}^{*}\right) . \tag{I}
\end{align*}
$$

Let $x_{i}{ }^{*}=\left(\sigma_{i 1}, \sigma_{i 2}, \ldots\right)(i=1, \ldots, n)$ be linearly independent functionals in $\operatorname{ext} S\left(l_{1}{ }^{*}\right)$. Now

$$
\begin{aligned}
\operatorname{det}\left[x_{i}^{*}\left(x_{j}\right)\right] & =\left|\begin{array}{llll}
\sum \sigma_{1 j} x_{1 j} & \sum \sigma_{1 j} x_{2 j} & \cdots & \sum \sigma_{1 j} x_{n j} \\
\cdots \sigma_{n j} x_{1 j} & \sum \sigma_{n j} x_{2 j} & \cdots & \sum \sigma_{n j} x_{n j}
\end{array}\right| \\
& =\sum_{j_{1}, \ldots, j_{n}=1}^{\infty} x_{1 j_{1}} x_{2 j_{2}} \cdots x_{n j_{n}} D\left(j_{1}, \ldots, j_{n}\right),
\end{aligned}
$$

where

$$
D\left(j_{1}, \ldots, j_{n}\right)=\left|\begin{array}{llll}
\sigma_{1 j_{1}} & \sigma_{1 j_{2}} & \cdots & \sigma_{1 j_{n}} \tag{1}\\
\cdots & & & \\
\sigma_{n j_{1}} & \sigma_{n j_{2}} & \cdots & \sigma_{n j_{n}}
\end{array}\right|
$$

Substituting for $x_{i j}$, we get

$$
\begin{equation*}
\operatorname{det}\left[x_{i}^{*}\left(x_{j}\right)\right]=\sum_{j_{1}, \ldots, j_{n}=1}^{\infty} r^{2^{n j_{1}+1}+2^{n j_{2}+2}+\ldots+2^{n j_{n}+n}} D\left(j_{1}, \ldots, j_{n}\right) \tag{2}
\end{equation*}
$$

Suppose $\left\{j_{1}, \ldots, j_{n}\right\}$ and $\left\{j_{1}{ }^{\prime}, \ldots, j_{n}{ }^{\prime}\right\}$ are any two sets of positive integers such that

$$
\begin{equation*}
2^{n j_{1}+1}+2^{n j_{2}+2}+\cdots+2^{n j_{n}+n}=2^{n j_{1}^{\prime}+1}+2^{n j_{2}^{\prime}+2}+\cdots+2^{n j_{n}^{\prime}+n} \tag{3}
\end{equation*}
$$

Because of the special form of the exponents in expression (3), and because every integer has a unique binary expansion, it follows that $j_{i}=j_{i}{ }^{\prime}$ for
$i=1, \ldots, n$. In particular then, distinct ordered arrays $\left\{j_{1}, \ldots, j_{n}\right\}$ give rise to distinct powers of r in (2). Hence each nonzero coefficient of the right side of expression (2), regarded as a power series in r, is a determinant $D\left(j_{1}, \ldots, j_{n}\right)$.

Lemma 2.1. The coefficients $D\left(j_{1}, \ldots, j_{n}\right)$ are all integers and at least one is nonzero. Moreover, $\left|D\left(j_{1}, \ldots, j_{n}\right)\right| \leqslant n^{n / 2}$.

Proof. Since $\sigma_{i j}= \pm 1$ for every i and j, it follows from (1) that $D\left(j_{1}, \ldots, j_{n}\right)$ is an integer. Further, by Hadamard's determinant inequality, $\left|D\left(j_{1}, \ldots, j_{n}\right)\right| \leqslant n^{n / 2}$. Since the vectors $x_{i}^{*}=\left(\sigma_{i 1}, \sigma_{i 2}, \ldots\right)(i=1, \ldots, n)$ are linearly independent, the rank of the n by ∞ matrix having these vectors as rows is n. Hence $D\left(j_{1}, \ldots, j_{n}\right) \neq 0$ for some j_{1}, \ldots, j_{n}.

Lemma 2.2. Let $f(r)=\sum_{0}^{\infty} a_{n} r^{n}$ be a power series whose coefficients are integral, not all zero, and $\left|a_{n}\right| \leqslant M$. If $0<\xi<(1+M)^{-1}$, then $f(\xi) \neq 0$.

Proof. Let N denote the smallest integer n such that $a_{n} \neq 0$. Then

$$
\begin{aligned}
|f(\xi)| & =\left|a_{N} \xi^{N}+a_{N+1} \xi^{N+1}+\cdots\right| \\
& \geqslant\left|a_{N}\right||\xi|^{N}-\sum_{N+1}^{\infty}\left|a_{n}\right||\xi|^{n} \\
& \geqslant|\xi|^{N}-M \frac{|\xi|^{N+1}}{1-|\xi|}=\frac{|\xi|^{N}}{1-|\xi|}[1-(1+M)|\xi|] \\
& >0 .
\end{aligned}
$$

Now for each set of n linearly independent functionals $x_{i}{ }^{*} \in \operatorname{ext} S\left(l_{1}{ }^{*}\right.$), the expression (2) is a power series in r with coefficients $D\left(j_{1}, \ldots, j_{n}\right)$ which satisfy the hypothesis of Lemma 2.2 with $M=n^{n / 2}$. Since $0<r<\left(1+n^{n / 2}\right)^{-1}$, it follows from Lemma 2.2 that (I) holds, and so we have that x_{1}, \ldots, x_{n} spans an n-dimensional interpolating subspace in l_{1}.

For the case l_{1}^{m}, fix an arbitrary integer $1 \leqslant n \leqslant m$. Set

$$
x_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i m}\right) \quad(i=1, \ldots, n),
$$

where (as before)

$$
x_{i j}=r^{2^{n+i}}
$$

and $0<r<\left(1+n^{n / 2}\right)^{-1}$. Then exactly the same proof as above shows that x_{1}, \ldots, x_{n} spans an n-dimensional interpolating subspace in l_{1}^{m}.

3. The Nonexistence of Interpolating Subspaces of Dimension Greater Than One in the Complex Spaces l_{1} and $l_{1}{ }^{m}$.

We first prove four lemmas concerning matrices. For these lemmas, unless otherwise stated, lower case letters will denote complex numbers.

Call two numbers a and b parallel if there exist real numbers x and y, not both zero, such that $x a+y b=0$.

Lemma 3.1. If $B=\left(b_{i j}\right)$ is a 3×2 matrix whose first two rows are linearly independent, then there is a nonzero vector $\left(c_{1}, c_{2}, c_{3}\right)$ in the column space of B and a solution z_{1}, z_{2}, z_{3}, to the equation $z_{1} c_{1}+z_{2} c_{2}+z_{3} c_{3}=0$ such that $\left.\mid z_{i}\right\}=1$ and either
(i) some two of the numbers $z_{i} c_{i}$ are not parallel, or
(ii) $c_{3}=0$.

Proof. First perform column operations to bring B into the form

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
a & b
\end{array}\right]
$$

If $|a|=|b|$, then the column space contains a vector $\left(c_{1}, c_{2}, 0\right)$ with $\left|c_{1}\right|=\left|c_{2}\right|=1$, in which case we take $z_{1}=-c_{2} / c_{1}, z_{2}=z_{3}=1$.

If $a=0, b \neq 0$, the column space contains the vector $\left(c_{1}, c_{2}, c_{3}\right)=(d, 1, b)$ for arbitrary d. If b is real, take $d=-(i+b)$ and $\left(z_{1}, z_{2}, z_{3}\right)=(1, i, 1)$. Thus $z_{1} c_{1}+z_{2} c_{2}+z_{3} c_{3}=0$ and $z_{2} c_{2}=i$ and $z_{3} c_{3}=b$ are not parallel. If b is not real, take $z_{1}=z_{2}=z_{3}=1$ and $d=-(1+b)$.

The case $a \neq 0, b=0$ is similar to the case above. Assume therefore that $a \neq 0, b \neq 0$, and $|a| \neq|b|$. In particular, either $b \neq-1$ or $a \neq-1$. By symmetry, it suffices to assume $b \neq-1$. Choose $z \neq-a,|z|=1$, such that $(1+b) z /(a+z)$ is not real. The column space contains the vector $\left(c_{1}, c_{2}, c_{3}\right)=(d, 1, d a+b)$ for arbitrary d. Take $d=-(1+b) /(a+z)$ and $\left(z_{1}, z_{2}, z_{3}\right)=(z, 1,1)$. Thus $z_{1} c_{1}+z_{2} c_{2}+z_{3} c_{3}=0$, and $z_{1} c_{1}$ is not parallel to $z_{2} c_{2}$ since $z_{1} c_{1}=z d$ is not real but $z_{2} c_{2}=1$.

Lemma 3.2. If $B=\left(b_{i j}\right)$ is an $m \times 2$ matrix $(m \geqslant 3)$ of rank 2 , then there is a nonzero vector $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ in the column space of B and a solution $z_{1}, z_{2}, \ldots, z_{m}$ to the equation $z_{1} c_{1}+z_{2} c_{2}+\cdots+z_{m} c_{m}=0$ such that $\left|z_{i}\right|=1$ for each i and either
(i) some two of the $z_{i} c_{i}$ are not parallel, or
(ii) all but two of the c_{i} are zero.

Proof. Rearrange the notation so that the first two rows of B are linearly independent. Let

$$
B_{1}=\left[\begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
a & b
\end{array}\right]
$$

where $a=b_{31}+\cdots+b_{m 1}, b=b_{32}+\cdots+b_{m 2}$, and apply Lemma 3.1: there is a nonzero vector (c_{1}, c_{2}, c) in the column space of B_{1} and a solution $\left(z_{1}, z_{2}, z\right)$ to the equation $z_{1} c_{1}+z_{2} c_{2}+z c=0$ such that $\left|z_{1}\right|=\left|z_{2}\right|=|z|=1$ and either $c=0$ or some two of $z_{1} c_{1}, z_{2} c_{2}, z c$ are not parallel. Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be the corresponding vector in the column space of B (where $c=c_{3}+\cdots+c_{m}$).

If some two of $z_{1} c_{1}, z_{2} c_{2}, z c$ are not parallel, take $z_{3}=\cdots=z_{m}=z$. It follows that some two of $z_{1} c_{1}, z_{2} c_{2}, \ldots, z_{m} c_{m}$ are not parallel.

Now suppose $c=0$. Then $c_{1} \neq 0$. If $c_{3}=\cdots=c_{m}=0$, take $z_{3}=\cdots=$ $z_{m}=z$. If $c_{j} \neq 0$ for some $3 \leqslant j \leqslant m$, choose $\left|z^{\prime}\right|=1$ such that $z_{1} c_{1}$ and $z^{\prime} c_{j}$ are not parallel, and take $z_{3}=\cdots=z_{m}=z^{\prime}$.

Lemma 3.3. If $d_{1}+d_{2}+\cdots+d_{m}=0(m \geqslant 3)$ and some two of the d_{i} are not parallel, then there is an $(m-1) \times m$ matrix $W=\left(w_{i j}\right)$ of rank $m-1$, with $\left|w_{i j}\right|=1$, such that

$$
W\left[\begin{array}{c}
d_{1} \tag{1}\\
d_{2} \\
\vdots \\
d_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Proof. Proceed by induction on m. For $m=3$, arrange the notation so that d_{1} is not parallel to d_{2}. We can assume without loss of generality that $d_{1}+d_{2}=1$. Hence neither d_{1} nor d_{2} is real. Let w, z be the solution of the equation $w d_{1}+z d_{2}=1$ which satisfies $|w|=|z|=1$ and $w \neq z$ (i.e., take $w=\bar{d}_{1} / d_{1}, z=\bar{d}_{2} / d_{2}$). The matrix

$$
W=\left[\begin{array}{lll}
1 & 1 & 1 \\
w & z & 1
\end{array}\right]
$$

is then a solution to Eq. (1).
Assume now that $m \geqslant 4$ and that Lemma 3.3 is true for $m-1$. If some d_{i} is zero, we can assume that $d_{m}=0$. By the induction hypothesis, there is an $(m-2) \times(m-1)$ matrix $W_{1}=\left(w_{i j}\right)$ of rank $m-2$ such that

$$
W_{1}\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{m-1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

Hence the matrix

$$
W=\left[\begin{array}{cccr}
w_{11} & \cdots & w_{1, m-1} & 1 \\
\vdots & & & \vdots \\
w_{m-2,1} & \cdots & w_{m-2, m-1} & 1 \\
w_{11} & \cdots & w_{1, m-1} & -1
\end{array}\right]
$$

has rank $m-1$ and satisfies Eq. (1).
Assume therefore that all d_{i} are nonzero. Since $m \geqslant 4$, the d_{i} are all nonzero, and some two of the d_{i} are not parallel, it follows that there are distinct indices i, j, k such that d_{i} is not parallel to d_{j} and $d_{i}+d_{j}$ is not parallel to d_{k}. Without loss of generality, we may assume that d_{1} is not parallel to d_{2} and $d_{1}+d_{2}$ is not parallel to some $d_{k}(k \geqslant 3)$. Also, we may assume that $d_{1}+d_{2}=1$, and hence that d_{1} and d_{2} are not real. As in the case $m=3$, let w, z be the solution to the equation $w d_{1}+z d_{2}=1$ which satisfies $|\boldsymbol{w}|=|z|=1$ and $w \neq z$. By the induction hypothesis, there is an $(m-2) \times(m-1)$ matrix $W_{1}=\left(w_{i j}\right)$ such that $\left|w_{i j}\right|=1, W_{1}$ has rank $m-2$, and

$$
W_{1}\left[\begin{array}{c}
d_{1}+d_{2} \\
d_{3} \\
\vdots \\
d_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

The matrix

$$
W=\left[\begin{array}{ccccc}
w_{11} & w_{11} & w_{12} & \cdots & w_{1, m-1} \\
\vdots & & & & \\
w_{m-2,1} & w_{m-2,1} & w_{m-2,2} & \cdots & w_{m-2, m-1} \\
w w_{11} & z w_{11} & w_{12} & \cdots & w_{1, m-1}
\end{array}\right]
$$

has rank $m-1$ since W_{1} has rank $m-2$ and the last row of W is not a linear combination of the first $m-2$ rows. Clearly, W is a solution to Eq. (1). This completes the induction step and proves the Lemma.

Lemma 3.4. If $B=\left(b_{i j}\right)$ is an $m \times 2$ matrix of rank $2(m \geqslant 3)$, then there is a nonzero vector $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ in the column space of B and an $(m-1) \times m$ matrix $E=\left(\sigma_{i j}\right)$ of rank $m-1$ such that $\left|\sigma_{i j}\right|=1$ and

$$
E\left[\begin{array}{c}
c_{1} \tag{2}\\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Proof. By Lemma 3.2 there is a nonzero vector ($c_{1}, c_{2}, \ldots, c_{m}$) in the column space of B and a solution $z_{1}, z_{2}, \ldots, z_{m}$ to the equation
$z_{1} c_{1}+z_{2} c_{2}+\cdots+z_{m} c_{m}=0$ such that $\left|z_{i}\right|=1$ for each i and which satisfies condition (i) or (ii) of that Lemma.

If (i) holds, some two of the $z_{i} c_{i}$ are not parallel. Hence by Lemma 3.3 there is an $(m-1) \times m$ matrix $W=\left(w_{i j}\right)$ of rank $m-1$ such that $\left|w_{i j}\right|=1$ for each i and j and

$$
W\left[\begin{array}{c}
z_{1} c_{1} \\
z_{2} c_{2} \\
\vdots \\
z_{m} c_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

The $(m-1) \times m$ matrix $E=\left(w_{i j} z_{j}\right)$ has rank $m-1$ and is a solution to Eq. (2).

If (ii) holds, we may assume without loss of generality that $c_{3}=c_{4}=\cdots=$ $c_{m}=0$. Let $E_{1}=\left(\sigma_{i j}\right)$ be any $(m-1) \times(m-1)$ matrix of rank $m-1$ such that $\left|\sigma_{i j}\right|=1$ and $\sigma_{11}=\sigma_{21}=\cdots=\sigma_{m-1,1}=z_{2}$. Then the $(m-1) \times m$ matrix

$$
E=\left[\begin{array}{c:c}
z_{1} & \\
z_{1} & E_{1} \\
\vdots & \\
z_{1} &
\end{array}\right]
$$

has rank $m-1$ and is a solution to Eq. (2).
We shall now use Lemma 3.4 to establish the nonexistence of interpolating subspaces in the complex spaces l_{1} and $l_{1}{ }^{m}$.

If M is a finite-dimensional subspace of a normed linear space X and if $A \subset X^{*}$, then we write $\operatorname{dim}_{M} A$ for the dimension of the subspace of M^{*} spanned by the restrictions of the members of A to M.

Lemma 3.5. Let M be an n-dimensional subspace of the complex space $l_{1}{ }^{m}$ $(1<n<m)$. Then there exists a set $A=\left\{x_{1}{ }^{*}, x_{2}{ }^{*}, \ldots, x_{m-1}^{*}\right\}$ of $m-1$ linearly independent functionals in ext $S\left(\left(l_{1}^{m}\right)^{*}\right)$ such that $\operatorname{dim}_{M} A<n$.

Proof. By Lemma 3.4, there exist $m-1$ linearly independent functionals $x_{1}{ }^{*}, \ldots, x_{m-1}^{*}$ in ext $S\left(\left(l_{1}^{m}\right)^{*}\right)$ and a nonzero element $y \in M$ such that $x_{i}{ }^{*}(y)=0$ for $i=1, \ldots, m-1$. Letting $A=\left\{x_{1}{ }^{*}, \ldots, x_{m-1}^{*}\right\}$, it follows that $\operatorname{dim}_{M} A<n$.

Theorem 3.6. Let M be an n-dimensional subspace ($n>1$) of complex l_{1} (or $l_{1}{ }^{m}$). Then M is not interpolating for any point outside of M. In particular, the complex spaces l_{1} and $l_{1}{ }^{m}$ contain no proper interpolating subspace of dimension greater than one.

Proof. Assume first that $M \subset l_{1}{ }^{m}$ and suppose, on the contrary, that M is interpolating for some $x_{0} \in l_{1}^{m} \sim M$. Let M_{0} be the linear span of M and x. By Lemma 3.5, there is a set A of $m-1$ linearly independent functionals in ext $S\left(\left(l_{1}^{m}\right)^{*}\right)$ such that $\operatorname{dim}_{M} A<n$. Since M is interpolating for x_{0}, it follows that $\operatorname{dim}_{M_{0}} A=\operatorname{dim}_{M} A<n$. Let F be a subspace of l_{1}^{m} complementary to M_{0}, so that $\operatorname{dim} F=m-n-1$. Then $\operatorname{dim}_{F} A \leqslant m-n-1$ so that

$$
\operatorname{dim}(\operatorname{span} A) \leqslant \operatorname{dim}_{M_{0}} A+\operatorname{dim}_{F} A<n+m-n-1=m-1
$$

which is absurd.
Assume next that $M \subset l_{1}$ and suppose, on the contrary, that M is interpolating for some $y=\left(y_{1}, y_{2}, \ldots\right)$ in $l_{1} \sim M$. We choose an integer k so that the map $\left(x_{1}, x_{2}, \ldots\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is one-to-one on the linear span M_{0} of M and y. Define $L: l_{1} \rightarrow l_{1}^{k+1}$ by

$$
L\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, \ldots, x_{k}, \sum_{k+1}^{\infty} x_{i}\right) .
$$

Then L is one-to-one on M_{0}. Let $M^{\prime}=L(M)$ and $y^{\prime}=L(y)$. Let $\tilde{x}_{1}^{*}, \ldots, \tilde{x}_{n}^{*}$ be functionals in ext $S\left(\left(l_{1}^{k+1}\right)^{*}\right)$ with

$$
\tilde{x}_{i}^{*}=\left(\sigma_{i 1}, \sigma_{i 2}, \ldots, \sigma_{i, k+1}\right) \quad(i=1, \ldots, n)
$$

Define

$$
x_{i}^{*}=\left(\sigma_{i 1}, \sigma_{i 2}, \ldots, \sigma_{i k}, \sigma_{i, k+1}, \sigma_{i, k+1}, \ldots\right)
$$

$(i=1, \ldots, n)$. Then x_{i}^{*} is in ext $S\left(l_{1}^{*}\right)$. Therefore there exists $w=$ $\left(w_{1}, w_{2}, \ldots\right) \in M$ such that $x_{i}^{*}(w)=x_{i}^{*}(y)$ for $i=1, \ldots, n$. Letting $w^{\prime}=L(w)$, we see that

$$
\tilde{x}_{i}^{*}\left(w^{\prime}\right)=x_{i}^{*}(w)=x_{i}^{*}(y)=\tilde{x}_{i}^{*}\left(y^{\prime}\right) \quad(i=1, \ldots, n)
$$

Since the \tilde{x}_{i}^{*} were arbitrary, M^{\prime} is interpolating for y^{\prime}. But since $y^{\prime} \notin M^{\prime}$, this is impossible by the first part of the proof, and hence the proof is complete.

Finally, we cite a result of Ault [2] which is in direct contrast to Theorem 3.6. Let Σ denote any subset of the set $\{z \in \ell:|z|=1\}$. We say that an n-dimensional subspace M of l_{1}^{m} is interpolating relative to Σ if for each $x \in l_{1}{ }^{m}$ and each set of n linearly independent functionals $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ in ext $S\left(\left(l_{1}{ }^{n}\right)^{*}\right)$-whose coordinates lie in Σ-there exists $y \in M$ such that $x_{i}{ }^{*}(y)=x_{i}{ }^{*}(x)(i=1, \ldots, n)$. Note that a finite dimensional subspace of $l_{1}{ }^{m}$ is interpolating relative to $\Sigma=\{z:|z|=1\}$ if and only if it is an interpolating subspace.

Using a Baire category argument, Ault proved the following.

Theorem (see [2, Corollary 1.21]). Let Σ be any countable subset of $\{z:|z|=1\}$. Then for each $1 \leqslant n \leqslant m$, the complex space $l_{1}{ }^{m}$ contains an n-dimensional subspace which is interpolating relative to Σ.

References

1. D. A. Ault, F. R. Deutsch, P. D. Morris, and J. E. Olson, Interpolating subspaces in approximation theory, J. Approximation Theory, 3 (1970), 164-182.
2. D. A. Ault, Characterization theorems and algorithms for best approximations, Ph.D. thesis, The Pennsylvania State University, 1970.

[^0]: * This author was supported by a grant from the National Science Foundation.

